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 The relevance of the study lies in the need to improve the diagnosis of amyotrophic lateral sclerosis (ALS) by 

utilizing diffusion tensor imaging (DTI) obtained from conventional 1.5 Tesla MRI scanners. The study aimed to 

investigate the potential of using different machine learning (ML) classifiers to distinguish between individuals 

with ALS. In this study, five ML classifiers (“support vector machine (SVM)”, “k-nearest neighbors (K-NN)”, naïve 
Bayesian classifier, “decision tree”, and “decision forest”) were used, based on two DTI parameters: fractional 

anisotropy and apparent diffusion coefficient, obtained from two manually selected ROIs at the level of the brain 

pyramids in 47 ALS patients and 55 healthy subjects. The quality of each classifier was evaluated using the 

confusion matrix and ROC curves. The highest accuracy in differentiating ALS patients from healthy individuals 

based on DTI data was demonstrated by the radial kernel support vector method (77% accuracy [p=0.01]), while 
K-NN and “decision tree” classifiers had slightly lower performance, and “decision forest” classifier was 

overtrained to the training set (AUC=1). The authors have shown a sufficiently accuracy of ML classifier “SVM” in 

detecting radiological characteristics of ALS in pyramidal tracts. 

Keywords: magnetic resonance imaging, 1.5 Tesla MRI scanner, fractional anisotropy, measured diffusion 

coefficient, machine learning classifiers, support vector method 
 

INTRODUCTION 

Amyotrophic lateral sclerosis (ALS) or Lou Gehrig’s disease 

is a devastating neurodegenerative neuromuscular disease 

characterised by progressive degeneration of upper motor 

neurons in the motor cortex and lower motor neurons in the 

spinal cord and brain stem. This loss of motor neurons causes 

progressive muscle weakness and amyotrophy [1]. The 

prevalence of ALS varies across geographical clusters, ranging 

from 3.01 (per 100,000 people) in Asia (excluding Japan) to 6.22 

(per 100,000 people) in Europe and 7.96 in Japan [2]. 

ALS is a heterogeneous disease whose mechanisms of 

pathogenesis and progression are not fully understood. There 

is currently no effective treatment able to halt the disease or 

reverse its symptoms, the available disease-modifying drugs 

can either slightly prolong survival or slow a functional decline. 

Currently, the average survival time of patients with ALS from 

the first symptoms to death is estimated at 36 months [3]. 

However, in some cases, symptomatic treatment including 

nutritional and respiratory support, and palliative care can 

alleviate its course, improve the patient’s quality of life and/or 

prolong life [4]. It is in this context that timely and accurate 

diagnosis of ALS is crucial, which, firstly, excludes other 

disorders that may have similar manifestations but a more 

favourable prognosis/available treatment, and, secondly, 

allows for an earlier introduction of an optimal treatment 

strategy. The diagnosis of ALS can be difficult due to the 

heterogeneity of clinical manifestations of the disease, the 

presence of atypical phenotypes, and, most importantly, due 

to the similarity to other neurological disorders [5]. Up to 10% 

of patients initially diagnosed with ALS have other diseases 

with similar symptoms and, occasionally, a much better 

prognosis [5]. 

Until recently, the revised El Escorial criteria and the Awaji 

criteria remained the “gold standard” for the diagnosis of ALS 

[6]. In 2019, ALS experts established new Gold Coast criteria, 

which a large cross-sectional study confirmed to be more 

accurate and sensitive than their predecessors [7].  

The examination tools used in patients with suspected ALS 

depend on the clinical picture and may include nerve 

conduction studies, needle electromyography, magnetic 

resonance imaging (MRI) and genetic testing, etc. Although 

neuroimaging methods are mainly used to exclude other 
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disorders of the nervous system, they can also provide 

additional information based on well-established radiological 

signatures of the disease, as presented in [8, 9]. Various MRI 

methods are used to track the functional and structural 

changes that characterise the onset and course of this disease, 

including voxel-based morphometry, functional MRI at rest 

(functional MRI) and magnetic resonance spectroscopy etc [10-

12]. 

Diffusion tensor imaging (DTI) is considered to be the most 

promising candidate for a radiological biomarker in ALS. This 

method, in particular, allows measuring microstructural 

pathological abnormalities in the corticospinal tract (CST), 

which reflect the degree of brainstem and cerebral cortex 

atrophy characteristic of ALS [13]. The studies [14-17] 

demonstrate that diffusion-weighted MRI-based neuroimaging 

provides reliable measurements for assessing clinical severity 

and monitoring the progression of the disease and should be 

included in clinical evaluation protocols for patients with 

suspected ALS. 

DTI provides unique information about the microstructure 

of white matter in the central nervous system. This method 

provides contrast images based on differences in the diffusion 

of water molecules in the brain. By measuring the orientation 

dependence of water molecule diffusion, DTI generates unique 

tissue contrasts that can be used to explore axonal 

organisation. Pathologic changes in white matter fibres in vivo 

are assessed by specific indicators, such as diffusion 

coefficients and fractional anisotropy (FA), whereby diffusion 

coefficients characterise changes in the degree and FA in the 

orientation of proton movement [18, 19]. However, measuring, 

calculating, and interpreting these indicators takes a lot of 

time, generates large amounts of information, and requires 

using complex data processing and analysis methods. 

Therefore, although potentially clinically useful, DTI is most 

commonly used in ALS research and has almost no place in 

routine clinical practice [8]. 

The solution to this problem can be using machine learning 

(ML) methods, which are a form of artificial intelligence and 

provide tools for developing powerful classifiers: they 

transform existing knowledge into an algorithm that can be 

used by physicians. Currently, ML is widely used in diagnostics, 

risk prediction, severity assessment, drug dose calculation etc. 

They are increasingly becoming useful assistants for 

healthcare professionals, allowing them to go beyond their 

own experience, reducing the time required to diagnose 

patients, eliminating cognitive biases, and reducing the risk of 

human error. 

This study aimed to demonstrate the effectiveness of ML 

methods in diagnosing ALS and distinguishing ALS patients 

from healthy individuals using routine MRI data. The research 

addresses key questions in ALS diagnosis, including the 

reliability of using FA and ADC as markers, compensating for 

low MRI resolution, the viability of an SVM classifier as an 

alternative to complex techniques, the complementarity of FA 

and ADC, classifier performance comparison, potential for 

routine use and screening, and identifying distribution trends 

for improved diagnostic tools. 

MATERIALS AND METHODS 

The study was conducted at the University Clinical Center 

of the Medical University of Warsaw. 

The study involved 47 patients with clinically definite, 

probable, or possible ALS according to [6]. The average 

duration of the disease, i.e., the time from the onset of the first 

paresis to the time of the study, was 31 months. The patients 

included 30 men and 17 women aged 23 to 81, with an average 

age of 53.  

The control group included 55 healthy volunteers without 

symptoms of ALS and without diagnosed neurodegenerative 

diseases. There were 29 men and 26 women aged 18 to 82. The 

average age of the control group was 50 years.  

Thus, both groups were comparable in terms of gender and 

age. All patients and volunteers provided written informed 

consent prior to inclusion into the study.  

For MRI examinations, a 1.5 Tesla scanner (Magnetom 

Avanto SQ Engine TIM 76×32) with a 12-channel main coil 

manufactured by Siemens (Erlangen, Germany) was used. The 

routine protocol consisted of an axial T2-weighted turbo spin 

echo (TSE) (TR/TE 4,650/85 ms; slice thickness 5 mm), axial T2-

weighted FLAIR image (Fluid attenuated inversion recovery, 

FLAIR) (TR/TE/TI 9,000/89/2.500 ms; slice thickness 5 mm), 

coronary T2 TSE (TR/TE 4.790/77 ms; slice thickness 5 mm), 

axial T1-weighted spin echo (SE) (TR/TE 592/13 ms; slice 

thickness 5 mm), axial slice in the mode of magnetic 

susceptibility-weighted imaging (SWI) (TR/TE 49/40 ms, slice 

thickness 3 mm), sagittal T2-weighted TSE (TR/TE 3,000/111 

ms, slice thickness 5 mm), axial diffusion-weighted imaging 

(DWI) (TR/TE 4,600/99 ms; slice thickness 5 mm, coefficient 

b=0/1,000/2,000 s/mm2), and a sagittal T1-weighted MPR 

(Magnetisation prepared rapid acquisition gradient, MPR) 

image (TR/TE 1720/2.92 ms; slice thickness 1 mm).  

Diffusion-weighted measurements were performed based 

on a spin echo echo-planar pulse sequence (SE EPI) with 

diffusion gradients applied in 30 spatial areas with the 

following parameters: TR/TE 3100/86 ms; slice thickness 5 mm; 

coefficient b=0/1,000 s/mm2; field of view (FOV) 230×230 mm, 

matrix size 128×128, number of averages–4. The study lasted 

6:45 minutes. 

The free-hand regions of interest (ROI) method was used to 

measure three parameters: axial FA, apparent diffusion 

coefficient (ADC), and TRACE. FA indicates how much the 

diffusion anisotropy scales the feature in the range from 0 to 1, 

where a result of “0” means that the diffusion is isotropic; and 

a value of “1” is theoretical and represents the highest level of 

anisotropy.  

ADC is equal to the average diffusion coefficient and 

represents the strength of diffusion. The association of FA with 

ADC allows identifying brain regions, where strong anisotropy 

accompanies high diffusion. TRACE parameter, or total 

diffusivity, is the sum of the three DTI eigenvalues, which when 

divided by three gives the mean diffusivity (MD).  

The areas of interest were placed by a qualified researcher 

according to the scheme presented by [8]: two in the anterior 

and posterior thirds of the pedicle of the internal capsule; one 

in the middle part of the brain stem; one in the bridge and 

medullary pyramids of the medulla oblongata. All ROIs 

presented were set on both sides, i.e., a set of 10 ROIs was 

obtained for each measurement. After performing the 

measurement using two ROIs in each location, the results were 

averaged across the sides. To evaluate the statistical 

significance of the parameters, statistical analysis using ANOVA 

with a mixed design was applied. 
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The study involved evaluating and comparing five different 

classifiers to assess their ability to distinguish between 

individuals with ALS and healthy individuals. The classifiers 

examined were support vector machine (SVM) with various 

kernels (linear, polynomial, radial, and sigmoid), k-nearest 

neighbors (K-NN), naïve Bayesian, decision tree, and forest of 

solutions classifiers. 

All 102 cases (47 patients and 55 control subjects) were 

randomly assigned with an appropriate proportion between 

ALS and control subjects for both the test and training sets. A 

training set of 76 samples was used to train the classifiers. The 

train function of the caret library provides a function for 

adjusting model hyperparameters. The training set was further 

split into 25 sets of 76 samples using the initial loading 

algorithm: each set was used to determine the optimal 

hyperparameter value from the hyperparameter tuning grid 

using Cohen’s kappa coefficient as a metric.  

For each classifier, a confusion matrix was calculated based 

on the predicted results of the test sets. For all analyses, it was 

used the R-statistical package, ver. 4.0.3 [20]. 

RESULTS 

Statistical analysis using ANOVA with a mixed design was 

performed on the averages of the images obtained from both 

sides. In the “groups” category, only FA and ADC parameters 

demonstrated statistically significant differences (p<0.001) 

between patients with ALS and healthy controls (Table 1).  

Therewith, all DTI parameters divided into “structures” 

demonstrated high statistical significance (all p<0.001), which 

was further confirmed by comparing the mean values between 

“groups” and “structures” (all p<0.001). It suggests that the 

difference between the control subjects and the ALS group was 

markedly different due to the “structures”. The interaction 

effects were even larger when interpreted using simple group 

effects, which were estimated for each of the respective 

structures. The values of these comparisons are presented in 

the last five columns of Table 1.  

The most pronounced differences were observed in FA 

values in the middle part of the brain stem, in the bridge of the 

medulla oblongata and the medullary pyramids of the medulla 

oblongata, and ADC values at the level of the pyramids. It 

confirms that they can be useful biomarkers for daily practice. 

There are several ML algorithms or classifiers that allow 

searching for boundaries between groups and determining 

whether an object belongs to one of them.  

SVM method is considered one of the most reliable 

forecasting methods based on a statistical learning system. 

Considering a set of training examples, each of which is 

labelled as belonging to one of two categories, this algorithm 

establishes a model that assigns new examples to one or the 

other category. 

In its original form, SVM is a linear classification algorithm, 

but using the so-called “kernel trick” it can be transformed into 

a non-linear classifier. In this approach, instead of learning a 

fixed set of parameters that correspond to the features of the 

input data, the algorithm “remembers” specific training 

examples and the weight of each of them. A prediction for new 

input data is established by applying a similarity function 

(called a kernel) to the training data. The SVM kernel is usually 

chosen depending on the nature of the phenomenon being 

studied. 

K-NN assumes that a new case should be classified into the 

nearest neighbor group. Thus, each new object is classified 

using the set of its neighbors (nearest training examples) and 

belongs to the class most common among them (k training 

samples). 

A naïve Bayes classifier checks the probability of a new 

object belonging to each group under the assumption of 

(naïve) independence between the features.  

“Decision tree” and “decision forest” algorithms divide 

data sets into subsets (groups) based on their most important 

attribute in several decision-making steps. 

All of the above classifiers can be used to achieve the stated 

purpose of this study, i.e., to analyse the data obtained by 

neuroimaging to separate ALS patients from individuals 

without neurodegenerative diseases. However, considering 

such features of ALS as heterogeneity of clinical 

manifestations, atypical phenotypes, etc., when applying ML 

algorithms to analyse DTI results, there is a high risk of 

overfitting – a phenomenon when the built model explains well 

the examples from the training sample, but performs poorly on 

new examples due to some random patterns. In other words, 

due to excessive complexity and too many parameters relative 

to the number of observations, the statistical model describes 

random error or noise instead of the underlying relationship. A 

perfect match to the training data is manifested when the Area 

under the ROC curve (AUC) is close to one, but this value 

demonstrates the classifier’s low efficiency, which is 

associated with a loss of generalisation. 

The results of the confusion matrix for all classifiers using 

the test set are presented in Table 2. 

Three classifiers produced statistically significant results: 

SVM with a radial kernel (p<0.01), K-NN classifier (p<0.04) and 

“decision tree” classifier (p<0.04). SVM classifier with a radial 

kernel demonstrated the highest accuracy (>0.77) and the 

lowest value of p. It was characterised by a sensitivity of 0.5, the 

highest specificity of 1.0, and the narrowest confidence 

interval. 

Using SVM classifier with a radial kernel to distinguish 

between ALS patients and healthy controls based on DTI 

results are demonstrated in Figure 1 and Figure 2, classifier 

performance with the training set and classifier performance 

with the test set, respectively. 

Table 1. Summary results of two-factor mixed design ANOVA 

Parameter 
Group (ALS vs HCs) Structure Group*structure Significance of simple effects of group 

F(1, 100)= p F(4, 400)= p F(4, 400)= p ICPost ICAnt CP Pons Pyramids 

FA 33.40 <.001 246.63 <.001 5.36 <.001 0.007 0.239 <.001 <.001 <.001 

ADC 16.53 <.001 55.13 <.001 2.68 0.032 0.240 0.083 0.003 <.012 <.001 

TRACE 2.85 0.094 38.01 <.001 3.56 0.007 0.014 0.357 0.137 0.084 0.065 

Note. ALS group: Patients; HCs group: Control group; ICPost & ICAnt: Measurements in anterior & posterior third of internal capsule pole; CP: In 
middle part of brain pons; Pons: In bridge of medulla oblongata; & Pyramids: In medullary pyramids of medulla oblongata 
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The results of calculating area under the curve (AUC) in the 

analysis of ROC curve, which visually displays the effectiveness 

of binary classification models, are presented in Table 4. 

Generally, when plotting ROC curve for different models, 

the model with the largest AUC is considered the best. Based 

on this, the best classifiers are decision forest and radial kernel 

SVM, as they have the highest AUC values for both the test and 

training datasets. However, with the training set, the AUC value 

for the “decision forest” classifier is one, which indicates that 

this classifier has been overtrained and disqualified.  

The ROC curves with the training set are presented in 

Figure 3, and the ROC curves calculated with the test set are 

presented in Figure 4. 

The graphical display of the data obtained during the 

analysis of the confusion matrix indicates that the “decision 

forest” classifier is overtrained and unusable. 

Table 2. Confusion matrix results for all classifiers 

Classifier TP TN FP FN Acc 95% CI p [AccNIR] Kappa McNemar’s test: p TPR TNR PPV NPV DR DP BA 

SVM linear 6 12 2 6 0.69 0.48 0.86 0.08 0.37 0.29 0.50 0.86 0.75 0.67 0.23 0.31 0.68 

SVM radial 6 14 0 6 0.77 0.56 0.91 0.01 0.52 0.04 0.50 1.00 1.00 0.70 0.23 0.23 0.75 

SVM polynomial 6 12 2 6 0.69 0.48 0.86 0.08 0.37 0.29 0.50 0.86 0.75 0.67 0.23 0.31 0.68 

SVM sigmoid 6 12 2 6 0.69 0.48 0.86 0.08 0.37 0.29 0.50 0.86 0.75 0.67 0.23 0.31 0.68 

K-NN 6 13 1 6 0.73 0.52 0.88 0.04 0.44 0.13 0.50 0.93 0.86 0.67 0.23 0.27 0.71 

Naïve Bayes 6 12 2 6 0.69 0.48 0.86 0.08 0.37 0.29 0.50 0.86 0.75 0.67 0.23 0.31 0.68 

Decision tree 8 11 3 4 0.73 0.52 0.88 0.04 0.46 1.0 0.67 0.79 0.73 0.73 0.31 0.42 0.73 

Decision forest 7 12 2 5 0.73 0.52 0.88 0.04 0.45 0.45 0.58 0.86 0.78 0.71 0.27 0.35 0.72 

Note. SVM linear: Support vector machine with a linear kernel; SVM radial: Support vector machine with a radial kernel; SVM polynomial: Support vector 
machine with a polynomial kernel; SVM sigmoid: Support vector machine with a sigmoid kernel; K-NN: k-nearest neighbors classifier; Naïve Bayes: Naïve 

Bayes classifier; Decision tree: “Decision tree”; Decision forest: “Decision forest”; TP: True positive; TN: True negative; FP: False positive; FN: False negative; 
Acc: Accuracy; CI: confidence interval; NIR: No information rate–level of lack of information; TPR (true positive rate): Sensitivity; TNR (true negative rate): 

Specificity; PPV: Positive predictive values; NPV: Negative predictive values; DR: Detection rate; DP: Detection prevalence; & BA: Balanced accuracy 

 

Figure 1. Radial kernel SVM classifier with training set (Source: 

Authors’ own elaboration) 

Table 4. AUC values for ROC curves 

Classifier SVM linear SVM radial 
SVM 

polynominal 
SVM sigmoid K-NN Naïve Bayes 

Decision 

trees 

Decision 

forest 

AUC 
Training set 0.73 0.77 0.70 0.70 0.70 0.70 0.76 1.0 

Test set 0.68 0.75 0.68 0.68 0.71 0.68 0.73 0.72 

Note. SVM linear: Support vector machine with a linear kernel; SVM radial: Support vector machine with a radial kernel; SVM polynomial: Support 

vector machine with a polynomial kernel; SVM sigmoid: Support vector machine with a sigmoid kernel; K-NN: k-nearest neighbors classifier; Naïve 

Bayes: Naïve Bayes classifier; Decision tree: “Decision tree”; & Decision forest: “Decision forest” 

 

Figure 2. Radial kernel SVM classifier with a test set (Source: 

Authors’ own elaboration) 

 

Figure 3. ROC curves with training set (Source: Authors’ own 

elaboration) 

 

Figure 4. ROC curves with test set (Source: Authors’ own 

elaboration) 
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For comparison, Figure 5 presents all the classifiers with 

the test set. 

In all figures, ADC and FA values are scaled, green dots 

represent patients with ALS, red dots represent controls, the 

green box represents classification into ALS group, the red box 

represents assignment to the control group. Thus, the more 

points that match the colour of the field on which they are 

placed, the more accurate the classifier is. 

DISCUSSION 

Recently, ML has been increasingly used in evidence-based 

medicine (EBM). EBM–is an experimental pool based on 

hypotheses and protocol experiments with well-defined 

populations and pre-selected variables, which is largely based 

on conventional statistical models [21-23]. In contrast, a form 

of artificial intelligence such as ML does not require a specific 

hypothesis and protocols, but transforms existing knowledge 

and data into algorithms, identifying patterns among several 

variables that are not defined in advance. However, as I. Scott 

 

Figure 5. All classifiers with a test set (Source: Authors’ own elaboration) 
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[24] notes, despite the fundamental difference between these 

two approaches, they can work in parallel, complementing 

each other, as some patterns that advanced computing 

programs (machines) can see cannot be detected by 

conventional biostatistics. 

For a while, it was believed that ML could only complicate 

the interpretation of results by the National Institutes of 

Health, as its methods, such as deep learning, usually require a 

very large amount of data. However, it was later established 

that some less demanding ML methods based on simple rules 

that work very efficiently even on small datasets have great 

potential for solving EBM problems [25, 26]. This approach 

both expanded the practical use of ML in medical research and 

allowed its adaptation to explore rare and complex diseases, 

including ALS.  

Currently, ML is widely used in ALS research, for example, 

to find and analyse biomedical signals inherent in this disease, 

identify and predict clinical subgroups, evaluate the results of 

muscle ultrasound in the early stages of ALS [27-30] etc. In 

addition, there are several publications devoted to using ML to 

analyse images of the brain affected by the disease obtained by 

neuroimaging and, in particular, diffusion tensor images [24, 

31-35]. This particular MRI method can detect changes in the 

white matter that occur in ALS by measuring differences in 

restrictions on water diffusion in the brain. Summarizing the 

results of a systematic review of using suiML algorithms to 

analyse data obtained by DTI-based neuroimaging, A. Behler et 

al. [31] note their enormous academic and clinical potential in 

developing biomarkers for this disease, which can be useful 

both at the group and individual level, for example, to improve 

individual differential diagnosis or serve as endpoints in 

clinical trials.  

Considering that ALS is a rare disease, the vast majority of 

researchers have to work with limited samples. Thus, in the 

works devoted to using ML for this disease, they use only those 

algorithms that work effectively on small data sets. An example 

of such algorithms is the Random Forest classifier, which 

proved to be a powerful tool for complex classification in a 

small group of 24 ALS patients in the study by I. Scott [24] and 

48 patients in A. Sarica et al. [35], and a linear SVM classifier that 

was able to distinguish between ALS patients and healthy 

volunteers in a relatively large group of 502 people in the study 

of T. Kocar et al. [32] and in a small group of 63 patients in the 

study of R. Welsh et al. [33]. 

Despite successful examples of ML applications for the 

interpretation of DTI images in ALS, it is still considered mainly 

as a research tool, which is quite far from daily clinical practice. 

It is largely explained by some technical difficulties of DTI, such 

as high requirements for scanning equipment, and 

qualification of radiologists or clinicians performing post-

processing. Some studies use ultra-high-field MRI scanners up 

to 7 Tesla to measure microstructural pathological 

abnormalities in CST, and complex data processing is required 

to assess axonal damage, which is not available in clinical 

settings [5, 8, 34, 35]. 

Some difficulties occur when applying ML algorithms. In 

particular, they need training sets with high 

representativeness, as the accuracy and quality of classifier 

generalisation depend on it. In the case of such a complex 

disease as ALS, with a variety of clinical manifestations and 

phenotypes, obtaining such sets can be a significant challenge 

[36, 37]. Insufficient or excessive training of classifiers, which 

makes them unsuitable for analysis, is another threat, and 

therefore, ML methods should be used carefully and cautiously 

to explore ALS.  

To bridge the gap between science and daily clinical 

practice, i.e., to ensure that advanced methods and 

technologies are used as quickly and as widely as possible, it is 

necessary to develop ways to combine their effectiveness with 

ease of use. The purpose of the current study was precisely to 

solve this problem for which high-resolution scanners were 

replaced with conventional 1.5 Tesla MRI machines, and 

instead of advanced post-processing methods, two manually 

selected ROI and ML classifiers were used. The method 

proposed in this study significantly reduced the requirements 

for the qualifications of specialists, since to apply it, they were 

only required to mark the two areas being explored in the DTI 

image and then transcribe the two digits into a simple 

classifier. 

Based on previous studies [14-17], the parameters of axial 

FA and measured ADC were chosen as markers that allow 

distinguishing patients with ALS from healthy individuals 

based on DTI images, as demonstrated by the studies of A. 

Behler et al. [31], S. H. Baek et al. [15], J. Li et al. [16], it is the 

association of FA with ADC that allows the best identification of 

brain regions, where strong anisotropy accompanies high 

diffusion, i.e., to identify those functional and structural 

changes that are considered pathological signs of the disease. 

A 1.5 Tesla MRI scanner with a relatively low resolution was 

used for the scan, and to obtain better data, a manual selection 

of the region of interest (ROI) was used. This approach has 

already been tested in the studies of A. T. Toosy et al. [38], M. 

Cosottini et al. [39] and the authors earlier studies [17] and 

confirmed its effectiveness.  

To analyse the data obtained with DTI, several ML 

algorithms were tested: SVM, K-NN method, naïve Bayesian 

classifier, “Decision Tree” and “Decision Forest”. The 

effectiveness of each classifier was tested using a confusion 

matrix. 

Three classifiers produced statistically significant results: 

SVM with the radial kernel (p<0.01), K-NN (p<0.04), and 

Decision Tree classifier (p<0.04), and the best results among 

them were demonstrated by SVM with the radial kernel, 

reaching 77% accuracy (p=0.01). In addition, this algorithm 

could separate ALS patients from the control group using the 

ROC curve, demonstrating an AUC of 0.75. It suggests that a 

supervised ML model, such as an SVM with a radial kernel, can 

be useful for separating ALS patients from healthy individuals 

based on DTI data obtained in a clinical setting. 

The results of the current study are in line with the 

conclusions of other authors who note that SVM is a robust 

classification algorithm that provides high accuracy by 

transforming data into a high-dimensional feature space, 

where there is a maximum margin for class separation [31, 40-

42]. While the accuracy of ML classifiers is lower than 

conventional threshold-based ROC, their usefulness is better 

due to the generalisation function: although the expansion of 

the tested group can give a significantly lower result than when 

using threshold-based ROC, ML classifiers can maintain their 

accuracy and generalisation quality, which depend only on the 

representativeness of the training set. 

Another significant advantage of this classifier is its ease of 

use. For example, the methodology developed by [43] to 

identify patients with schizophrenia using MRI results and ML 

achieves accuracy in a similar range but has a much higher 
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complexity compared to using an SVM classifier and the simple 

procedure for measuring and preparing data for analysis 

proposed in this study. 

Slightly better results when using the SVM classifier (AUC 

0.87-0.88) to separate patients with ALS from the control group 

were obtained by [32], which can probably be explained by a 

much larger sample size (404 patients with ALS and 98 healthy 

controls). Therewith, in a smaller group of 32 patients 

diagnosed with ALS and 31 healthy controls, the study in [33] 

obtained results that are somewhat inferior to the current 

study. Using SVM, it was achieved 71% accuracy in classifying 

disease states. 

In the current study, the specificity of the radial kernel SVM 

criterion reached 100%, but the sensitivity was only 50%. 

According to the latter indicator, it was significantly ahead of 

“decision forest” classifier, but it was “disqualified” due to 

overtraining, demonstrating AUC=1 on the training dataset. It 

excluded the possibility of generalising and correctly assessing 

the usefulness of the classifier. 

Other classifiers tested in the study that demonstrated 

statistically significant results were less effective. Thus, the 

accuracy of K-NN, “decision tree”, and “decision forest” 

algorithms reached 73%, and the AUC with the training data set 

was 0.70, 0.76, and 1.00, respectively. The exclusion of the 

“decision forest” classifier from the study due to retraining 

once again confirmed the necessity to be cautious when 

applying ML methods in practice. 

CONCLUSIONS 

The study confirmed that FA and ADC are reliable markers 

to distinguish ALS patients from healthy individuals using DTI. 

Manual selection of the region of interest compensates for low 

MRI resolution, and a radial kernel SVM classifier showed the 

highest accuracy, providing an alternative to complex post-

processing techniques. This easy-to-use classifier combined 

with a simple measurement protocol offers an affordable tool 

for routine ALS diagnosis with high accuracy, expediting the 

diagnostic process. The classifiers demonstrated similar 

boundary patterns, indicating the potential of FA and ADC for 

complementary diagnosis. Further research with larger 

datasets can explore trends and enhance the development of 

an effective ALS diagnostic tool using ML. 

Limitations 

A limitation of the current study is that it did not test 

random forest classifier, which has demonstrated good results 

in previous studies [24, 31, 35]. 

It was a single center studу that was based on a simplified 

procedure for measuring only three DTI parameters. In 

addition, this should be considered a limitation, as the unifying 

theme of ML applications is the integration of many 

multidimensional data sources that provide different 

perspectives on diseases. As noted by [31], the perfect 

identification of all patients with ALS in a group mixed with 

healthy people remains unattainable solely by DTI, but the 

combination of DTI parameters with those of other MRI 

methods can significantly increase the diagnostic sensitivity. 

Corrections for the lifestyle of the control group, the duration 

of the disease, and the addition of other parameters to the CST 

diffusion metrics, such as motor cortical diffusion or structural 

parameters such as cortical thickness or texture properties, 

can increase the diagnostic accuracy of SVMs [31, 32, 43], but 

significantly complicate using ML methods, particularly in daily 

clinical practice. 

Future Directions and Clinical Implications 

Future research can focus on integrating multimodal data 

to improve the accuracy and reliability of ALS diagnosis. 

Combining DTI parameters with other imaging modalities such 

as functional MRI (fMRI), structural MRI, genetic markers, or 

clinical biomarkers could provide a more comprehensive 

diagnostic assessment. This multimodal approach has the 

potential to enhance the understanding of ALS pathology and 

improve diagnostic accuracy. The development of advanced 

ML algorithms, particularly deep learning models, could 

contribute to improving the diagnostic capabilities in ALS. 

These algorithms can leverage the complex patterns present in 

DTI data to extract valuable features and provide more 

accurate and precise diagnostic predictions. 

Longitudinal monitoring and disease progression in ALS 

patients can be another focus of future research. ML 

approaches can be applied to analyze longitudinal DTI data, 

enabling the tracking of disease progression and the 

monitoring of treatment response. By identifying changes in 

DTI parameters over time, ML models may provide valuable 

prognostic information and aid in personalized treatment 

planning. 

Ultimately, the translation of ML-based diagnostic tools 

into clinical decision support systems can revolutionize ALS 

diagnosis. Integrating these algorithms into clinical workflows 

would assist clinicians in interpreting DTI data and making 

accurate ALS diagnoses, leading to improved diagnostic 

efficiency and patient outcomes. 

Summarize, future research can focus on exploring 

alternative ML algorithms, such as random forests or deep 

learning models, to improve the classification of ALS patients. 

Integration of multimodal data, validation on independent 

cohorts, refinement of feature selection techniques, and 

practical implementation of the classifiers in clinical settings 

are also important areas for further investigation. 
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